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Wivenhoe Park, Colchester CO4 3SQ, UK 

Received 2 May 1975, in final form 18 December 1975 

Abstract. The sensitivity of the Gibbs-DMarzio theory for the glass transition of polymers 
to its basic assumptions is analysed. The underlying model, and all the problems it raises, 
are graph-theoretical in nature. It is shown that the value of the flexing energy parameter e 
calculated from a measurement of the glass transition temperature T8, is dominated by the 
result appropriate to the limiting case when the concentration of holes is zero, the number of 
chains unity, and the chain length goes to infinity. Accordingly, the problem is dominated 
by the classical Hamiltonian-walk problem on a lattice graph. An application of known and 
new results on the enumeration of Hamiltonian walks shows that E is only a semi-empirical 
parameter at present, and the formal evaluation of e to 1% accuracy is not justified. 
However, the doubts recently cast on the verifiability of the transition T2 of the Gibbs- 
DiMarzio equilibrium theory on various grounds are not considered justified. 

The role of the graph-theoretical ingredients of the problem, namely the nature of the 
lattice graph, its coordination number, and the boundary conditions, are examined. The 
dimensionality of the embedding space (e.g. the distinction between ‘two-dimensional’ and 
‘three-dimensional’ lattices) is discarded in favour of the parameter actually relevant, called 
the r-degree of the lattice graph. Asymptotic results on the enumeration of Hamiltonian 
walks are presented for the unoriented honeycomb, and for the oriented square and other 
lattices, including the covering lattices of certain orientations of the diamond and cubic 
lattices. 

1. Introduction 

In series of papers (for the preceding part see Gordon et a1 1976), the concept of 
perfectly flexible or ‘graph-like’ particles for approximate treatments of physical and 
‘emid properties of diverse amorphous materials has been the unifying theme. 
Modelsusing such particles have a wide currency in the literature, e.g. the random-%$ 
h n  in Polymer science. The theoretical problems posed and sometimes solved in this 

are rarely recognized for what they are, namely problems in graph theory. 
surprising because the Same graph-theoretical notions constantly recur, for 

Instance spanning trees and the special case thereof constituted by Hamiltonian walks 
‘%e moreover, related problems and notions feature prominently in the 
“levant branches of the purely mathematical literature. The present paper illustrates 
‘state of affairs by turning attention to the case of glass-like polymers, not previously 
““dered in this series. 

l n 0 U f h w ,  the model of Gibbs and DiMarzio (1958a, b, Gibbs 1956) briefly Su*;- * m the following section (0 2), is the best available for treating the statistical 
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mechanics of the glass transition, and to serve as a starting point for kinetic beahen& 
also (cf. Adam and Gibbs 1965). Our purpose is to show that a well defined, and 
actually quite famous, graph-theoretical problem constitutes a limiting case of the 
problem solved by Gibbs and DiMarzio, and that this limiting case dominates the 
concrete application to calculations of glass transition temperatures (TJ. T~~ basic 
combinatorial approximations have been employed by Gibbs and D i M d o  to estimate 
the total number of configurations of the system. The first of these is the Rory-~~ggins 
approximation which assumes random OCcUpatiOn Of neighbour sites and the second is 
that of Huggins (1942) which takes into account also the effect of second-nei&bu 
sites. The actual situation seems to lie between these two approximations, f i e  
weakness of the approximations used in solving the problem does not throw doubt on 
the soundness of the model itself in describing the equilibrium properties of ~ ] ~ e ~  
near their glass transition. Henceforth we shall refer to a simplified version of the 
Gibbs-DiMarzio model in which the first of the above mentioned approximations is 
employed. Recent attacks on the relevance of equilibrium properties to this transition 
are examined in the discussion (see § 3. 1), where the graph-theoretical aspects of the 
Gibbs-DiMarzio model are then detailed. The most important questions here are the 
possible effects of the coordination number (0 3.2.1), of the boundary conditions 
(0 3.2.3), of the type of lattice graph, and of the r-degree of points in this graph (8 3.2.2). 
The r-degree of a lattice graph is introduced as a function whose properties determine 
effects usually attributed by physicists to the number of dimensions of the embedding 
space. 

The final paragraph (9 3.3) of the discussion summarizes the consequences of the 
results in this paper. 

2. The Gibbs-Diiarzio model 

In discussions of the entropy of polymer solutions it is usual to employ an expression of 
the Flory-Huggins type. With suitable generalizations this formula was adapted bY 
Gibbs and DiMarzio to yield a model for the glass transition in polymers. In this 
treatment nl solvent molecules are replaced by nl holes. We are then in a Position to 
calculate the number of ways P in which n1 holes and n2 chains each comprising 
segments can be accommodated on a lattice of N sites. In discussing the glss@mition 
in polymers, a diamond lattice of N sites is employed. We have 

N=nl+nzx.  

The stiffness of the polymer chain is measured by introducing a parmeter f. n? a 
fraction f of the bonds in the chains on the lattice occur in a gauche COnfoma'on 
(energy E )  and a fraction (1 -f) in the trans conformation energy (energy O). 
formula reads 

N! 2nz+fnz(x-2) b 2 ( X  --2)1! (2) 
P =  

nl !  nz!"4x-') [fn~b -2)1![(1 - f )n2(~-2)1!  
a"@ 

where P is now the number of ways n2 chains (each of x segments) Can be 
dated on a lattice of N =  nl + n2x sites in such a way that f n z ( x - 2 )  Out Of a nz(x-2' mction 
bonds are in the gauche conformation. The behaviour of the parameter f as 
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nedass transition temperature Tg is taken to occur when P = 1. In terms of E, and the 
fraction 01 of holes 

01 = d b l +  w )  (4) 
a d  02 Of po lper  

02=1-01. 

 is leads to the following equation for Tg (neglecting a small term n2 In Q): 

The diamond lattice has a coordination number z = 4, and in general, for a lattice with a 
general coordination number z, equation (6) can be written in the form 

lUP -- - o = (2) ( -EK In u1 -in(+ zx> + ( x  - I)) 
n2b - 2) x-2 1 - V l  

( z - 2 )  exp(-E’RTp) (~/RTJ+ln[l+(z-2) exp(-JRTJJ). (6’) 
1+(z-2) exp(-e/RTp) 

Equation (6) was used by Gibbs and DiMarzio as well as several other workers (e.g. 
Beevers and White 1960, Cowie and Toporowski -1968) to fit experimental data on the 
dependence of Tg of various polymers on the chain length x. Figure 1 is a typical plot, 
Uenfrom the work of Cowie and Toporowski on c methyl styrene. The chain stiffness 
parameter E, derived from f by equation (3), has generally been deduced to an accuracy 
of about 1% (or 0.01 kcal mol-’). No doubt because of the relative complexity of 
quation (6), an adequate discussion of the sensitivity of such results to the underlying 

, , I I 1 k x10-L 
273 1 

0 2 L 
M”-’ 

F i e  1. Fit of equation (6) ( e / k  = 610 K, u1 = 0.041) to TB as function of chain length of 
smdiotactic a-methyl polystyrene by Cowie and Toporowski (1968). 
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assumption has not been given. We show below that a simple analysis is po&& It 
then emerges that the theory based on the crude Floq-Huggins approhation: as 
expressed in equation (6’), makes Tg strongly dependent on the coordination number 
(see equation (18) and 9 3.2.1). More seriously, the absolute values of 7’’ C&&edare 
then appreciably changed, or in practice the measured Tg leads to hefty changes in the 
flexing energy E employed as an adjustable parameter. 

2.1, Examination of equations (6)  and (6’) 

The object of this section is a critical examination of equations (6) and (67. ne 
right-hand sides of both, which in effect determine the glass transition temperature T~ 
depend on n2 (the number of chains) only implicitly through the volume fraction 
t ) l (=nl / (n l+n2x))  of holes. Accordingly in the limit zrl + 0 the glass transition 
temperature becomes independent of n2. The thermodynamic limit requires 
N =  (nl + n2x) + CO, but this may be simply satisfied by letting x + CO. As long as he 
‘mean field’ character of the Gibbs-DiMarzio model is maintained it does not actually 
matter whether n2 + CO or n2 = constant as long as o1 + 0 and x + CO. One would 
therefore feel justified in assuming n2 = 1, i.e., only one polymer chain as the system 
under investigation. 

With this assumption following step by step the procedure followed by Gibbs and 
DiMarzio, we may still obtain equations (6) and (6’) (i.e. x + CO in equation (6)). Next, 
using the further limit o1 + 0, equation (6‘) becomes: 

I n P  (2-2)Q 2 - 2  
N exp(Q) + (z  - 2) exp(Q1 

-= +In( 1 +-) - 1 = 0 (7) 

where Q is the dimensionless variable 

Q = e/RTg. (8) 

Furthermore equation (7) would be obtained from equation (6’) upon the direct 
substitutions n1=0, n2 = 1, and letting x + 00. In this latter case the number of 
configurations of the system (which determines the configurational entropy) he 
number of Hamiltonian walks employed for the packing of the polymer chain(ski.e.3 
there is a one-to-one correspondence between polymer configurations and Hamilto- 
nian walks. 

Thus, if the following limit exists for the number HN of Hamiltonian walks: 

we may, following the probabilistic arguments of the Gibbs-DiMarh model, and 
taking into account that the number of available configurations is restrained by’(9)’ 
show that equation (7)  should now read: 

Finally a rigorous relationship exists between the number of closed-packed (nl=o’ 

Polymer arrangements on a lattice and HN which goes beyond the Obvious one-tHne 
correspondence in the case where n2 = 1. and let & 

fie lard@ Consider a regular lattice of N points and coordination number Z 

denote the total number of arrangements of n 2 ( = N / x )  x-men filling 
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(@&g that N is an integer number of x ) .  Obviously any Hamiltonian walk can be 
disconnected to yield a unique x-mer configuration, on the other hand not every x-mer 
@&vation can be converted into a Hamiltonian walk by connecting the end points of 
be x-men. Thus by noting that (N/x )  - 1 end-point connections must be made in order 
to convert (if possible) the x-mer configuration to  a Hamiltonian walk and that each of 
these connections can be made in certainly not more than (z  - 1) ways we obtain the 
following: 

(1 1) b"xb-1  ( 2N/x ) ( z  - 1) Cx,N 3 H N  

where the term (2N/x)  accounts for the number of starting points. Thus provided that 
be following limits exist, we fbd: 

It is plausible that (12) holds as an equality for lattice graphs of physical interest. We 
shall put forward the conjecture for all commonly used lattices including the diamond 
and cubic lattices: 

In any case, it is clear that equation (10) may be used to evaluate an important 
limitingcase of the Gibbs-DiMarzio model in terms of the enumeration of Hamiltonian 
walks, either using the equality, or the inequality sign in equation (12) (to obtain a lower 
bound for the entropy). 

2.2. Tne Hamiltonian-walk problem 

ne combinatorial puzzle described above for the Gibbs-DiMarzio model degenerates 
in the limiting case discussed in the previous section, to a classical graph-theoretical 
problem: the number of distinct Hamiltonian walks (as distinct from closed Hamilto- 
nian circuits) on a lattice graph. A Hamiltonian walk visits every point of the lattice 
exactly once. Figure 7 shows some examples of Hamiltonian walks on hexagonal 
(Plane) lattice graphs of various numbers N of points. Our interest is in the asymptotic 
behaviour as N + 00 of the number of distinct Hamiltonian walks that can be drawn on 

!&venlattice. No exact and general solution is known, but we shall refer to a famous 
Nlution of Kasteleyn (1963a, 1967) for the square lattice, and the new but simple 

C " e r  a walk of N steps on a lattice graph of coordination number z for interior 
pink If the boundary can be neglected, we may consider that all N +  1 points of the 

are in the interior. If the restriction of visiting each lattice point only once is given 
self-intersecting walks are allowed, or the excluded volume effect is neglected), 

'en there are of the order of ( z  - distinct walks of length N from a given lattice 
Using all N starting points, there are 

for the honeycomb lattice (cf. appendix). 

P-N(z - 1 y / 2  (14) 

Sconf= kNIn(z - 1)+ k In N -  k In 2. 

distinct walks. The configurational entropy of the system is 

(1.5) 
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n e  entropy must become proportional to N asN + a, if it is to represent an exenshe 
property of state. It does so and the proportionality constant is 

lim S/Mc  = S,,f,,,/R = In(z - 1). 
N+m 

%US the trivial factor $iV in equation (14) does not contribute to the entropy and is 
neglected in the sequel. The reduction in Sconf,mol due to the excluded volume effect, i.e. 
the elimination of all self-intersecting walks, is estimated from the F ~ o ~ - H ~ ~ ~  
model by passing to the limit Q + 0 in equation (10) (cf. Meares 1965, Vrij andvanden 
Esker 1972). Thus 

and 

S c o n r , m o d R  = W z  - l)/e]. (18) 

2.2.1 The honeycomb lattice. The crudity of this approximation is apparent fi we 
re-derive the limit directly from the assumptions of the FIory-Hugpjns model ( f o l ~ o ~ g  
Gordon 1965). According to equation (14), P varies asymptotically as ( ~ - i ) ~ ,  if 
self-intersecting walks are allowed. The multiplying factor required for reducing this 
result to non-intersecting walks only, is merely approximated by taking it from t h e m  
of a polymer chain totally disconnected into monomer units, i.e. N ‘walks’ of length 
zero. Then the chance that N points chosen (for these ‘walks’) on a lattice of Npoints 
should all be distinct is N ! / N N (  = favourable over total number of selections). By 
Stirling’s approximation this does indeed reduce P by the factor e-N as in equation (17). 
But we must not conclude that this approximation is as good as Stirling‘s is in general. 
We see immediately, for example, that in the special case z = 3, equation (17) predicts 
that P tends exponentially to zero, while it is shown in the appendix that for the concrete 
example of the honeycomb lattice (figures 6,7) the exact soIution is P + CO. Physically, 
however, this turns out to be a minor discrepancy, and the result for z = 3 actually 
support to the treatment of the model. This is because the molar entropy, accordingto 
(181, turns out to be negative for z = 3, and must thus be taken as zero (i.e. the polper 
chain will have at least one configuration available to it). And the exact result, $venin 
the appendix, also leads to zero entropy, because P tends to infinity rather W A Y ,  
namely like (constant)””. To get a meaningful non-zero molar configurational 
entropy requires that F-(constar~t)~, and this occurs for zs4 both in theno? 
Huggins approximation, and as far as is known, in exact calculations for unonented 
lattices (see 0 2.2.2). 

2.2.2. The square lum’ce. The asymptotics of the enumeration of Hamiltonianwdksfor 
2 = 4 is graph-theoreticilly more difficult than for z = 3. An elegant and exact soluwn 
was obtained explicitly for the configurational entropy of chains by KasteleP (1963!f0r 
a square lattice. He simplified the problem by introducing a specific traffic re@abo? 
Since the Hamiltonian walk arrives at a given lattice point by one line, it 
principle, z - 1 = 3 lines available for continuing to a neighbouring point, but*edc 
regulation excludes one of these three, namely, Kasteleyn stipulated that *e ’‘@ 
lattice was ‘oriented’ by a system of alternating one-way streets in force in Manbaw‘ be justified This move was motivated by mathematical simplicity but could, in PrinciPP7 
by reference to bond angles. (The restriction of the chain to a courSeconslstentw but a more Manhattan traffic flow is not easy to translate into bond angle restrictions9 
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conmclng m e ,  that of the correspmding ‘covering lattice’, is also mentioned by 
mtelep. In that case, (included in table l), at each corner, the walk must continue at 
right angles-either to the left or to the right-so that the bond angle is restricted to 
90“,) The computational difficulty of the boundary effects (cf. § 3.2.3) arising with a 
finite square lattice is much reduced by the choice of toroidal boundary conditions, i.e. 
be quare lattice is imagined to be embedded in the surface of a torus without any free 
bundaryedges. The exact asymptotic solution of the graph-theoretical problem of the 
number of Hamiltonian circuitsfor a square lattice on a torus derived by Kgsteleyn is: 

P-exp(CN/.rr) - 1 . 3 3 ~ 3 ~  (19) 

-0.916. (20) c= p ( $ 2 + ( 4 ) 2 -  . . . 
where c is Catalan’s Constant 

In comparing the exact result of equation (19) with that of the Flory-Huggins 
approximation usually employed, one must bear in mind that the latter refers to a lattice 
unrestricted by traffic regu!ations (i.e. to unoriented graphs). Accordingly equation 
(19) gives a lower bound for the mere general Unrestricted problem. It may seem 
reasonable to expect that for the unrestricted case P varies as the Nth power of a 
constant larger than 1 -338, since a walk can then continue, in principle, in three rather 
thantwo directions at each site. Domb (1974) pointed out that the result obtained by 
Lieb (1967) and Lieb and Wu (1972) for the residual entropy of ‘square’ ice forms an 
upper bound to nH for the case of an unoriented square lattice, i.e. nH< 1-539. Orr 
(1947) estimated nH = 1 a4 for the same case. Furthermore, one of us (AM) has carried 
out enumerations on a computer; these provide an estimate of nH = 1 -38, with limits 
10.042 suggested by reference to the lower bound of 1-338 provided by Kasteleyn’s 
result for the unoriented lattice. It seems not unlikely this lower bound coincides with 
the exact solution, notwithstanding the traffic regulations imposed by orienting the 
lattice. The limit of the Flory-Huggins result gives only 

f - (3/e)N - 1 * 104N. (21) 

The comparison of the lower bound of 1.338 with the estimate of 1.104 is not 
favourable as is seen by calculating the corresponding entropies .per site, namely, from 
quation (19) 

ad from equation (21) 

’IkN= (In P ) / N =  (In 3) - 1 = 0.099 

S/kN = (In P) /N  = 0.292 (lower bound) (22) 

(limit of the Flory-Huggins approximation). 

(23) 

thus an error of at least about a factor of three in the entropy calculated for the 
?me lattice from the Gibbs-DiMarzio treatment based on equation (23). The same iS 
‘ekelyto be true for the diamond lattice (see 03.2.2). In fitting the model to the 

chain length as a function of x ,  any such error has been compensated 
by adjusting the enthalpy parameters E and (occasionally) 01. We now 

show that, as might be expected, such artificial adjustments are large enough to render ‘? cOmParison of the resulting E with rotational barriers inaccurate. To this end we 
wntethe first equality of equation (7) in the form (using z =4) 

(In P)/N=[2Q/(2+exp CI)l+ln[l+(2/exp QIl-1 (7‘) 
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duly reduces to equation (23) for Q = 0. TO test the effect of passing to the better 
approximation of equation (22) we should amend equation (7') according to equation 
(10). We thus obtain (using nH= 1.338.. .) 

According to equation (7), the glass transition temperature is determind by 
equating the right-hand sides of equation (7') or equation (10') to 0, and the result is 
shown graphically in figure 2. We see, by comparing points A and B, that Q changes 
by about 50% when the solution to the combinatorial problem is improved bypassing 
from the Gibbs-DiMarzio (Flory-Huggins) model to Kasteleyn's result. The situation 
is little changed if we do not put the free volume fraction 01 = 0, as in equation (7), but 
retain the term ( q x  In uJ/ ( l -  O I ) ( X  -2) - 01 In u l / ( l  - V I )  from equation (6). ne 
usual value used is u1 = 0.025 which yields a term 01 In vl/(l- q) = 0.0945 to beadded 
on the right-hand side of equation (7') and (lo'), which moves both curves in figure2up 
by the same constant. We note that the whole of the free volume effect usually taken 
into account amounts to only one half of the difference (1 -0407 = 0.193) betweenthe 
two approximations to the underlying graph-theoretic problem! 

I 
I I ,  I t  I 

0 0.5 A 1.0  1.5 B 2.0 -0.L I 

w 

F'igure 2. Plot of (In P) /N  against the parameter Q which measures the bond-flexingenerD 
(equation (8)). The lower plot is according to equation (7), the upper plot a ~ 0 r ~ n g t o  
equation (10). Note the large correction, from A to B, in the flex parameter, as calculated 
from the measured Tg, where In P is equated to zero by the model. 

3. Discussion 

It was argued by Gibbs and DiMarzio that underlying the slow relaxations observable 
near a glass transition Tg region, there is a thermodynamic transition which is reflected 
by their statistical-mechanical model. This temperature which they called Tz, may lieas 
much as 50" below the observed (and rate-dependent) Tg. The kinetic aspectSWerelater 
appropriately treated by Adam and Gibbs (1 965). However, the experimental venfia- 
bility of the thermodynamic transition T2 is periodically called into question. we 
therefore devote the next section to a review of the thermodynamic evidence. 

3.1. Reality of the thermodynamic transition 
f the 4 s  Rehage and Borchard (1973) gave an excellent summary of the treatment O 

transition by Gibbs and DiMarzio: 'The usually observed transition to thedassYstateIs the @ansition 
treated as a kinetic process by these authors, but at infinitely slow cooling 
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I 

temperame should be lowered to such an extent that it coincides with the transition 
Tz. This would then make the glassy solidification a genuine second-order 

aaasition.’ We agree with this, but not with the next sentence: ‘This model is certainly 
very useful for the qualitative description of some phenomena, but this transition, 
paely for experimental reasons, cannot be proved.’ Figure 1 exemplifies the way in 

the model gives a quantitative account of the dependence of T2 on structural 
As regards experimental verifiability, since no measurement at an exact 

point is possible, all thermodynamic transitions are found experimentally by extrapola- 
6on(or interpolation); but the length of extrapolation on the temperature scale, which 
isnecessary in a given case, is not the only factor which governs the proof of existence of 
Beansition. For example, the quasi-linear range covered by the data points is also 
important; and a good statistical-mechanical model can raise our confidence in a linear 
extrapolation. In the case of the glass transition, the slowness of relaxations forces us to 
teat the equilibrium properties by extrapolation from regions of higher relaxation 
rates, e.g. higher temperatures. In this way, the paradox of Kauzmann (1948) arose 
from plotting the entropy of a liquid/glass system against temperature. Unless there is a 
rather sharp change in slope just below the observed freezing in of the motions, the 
entropy of the glass would soon fall below that of the crystal, in violation of the third 
law. The situation becomes specially clear if the plot is linearized in the usual way 
(figure 3). 

0.08 : 
t 

/ I 

Rehage and Borchard presented two methods of constructing equilibrium volumes 
ofPOIYstyrene below the Tg, i.e. below the temperature at which vitrification occurs on 
‘Ow cooling. We reproduce the relevant features of the two figures concerned (their 
’@@% 14 and 15; our figures 4 and 5 respectively). In each case, they argued that these 

equilibrium curves give ‘no indication of a transition’. In our opinion, our figure 4 
ShOwsthe expected result and no theory would predict any other, while figure 5 actually 
%wS the existence of T2. 
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I t I f ,  I 
LO 80 120 

96 

Figure 4. Plots of volume per base mole of atacticpolystyrene (M. = 20 000) melt(fiii1rw) 
and partial molar volume of the polymer in diethyl malonate (broken Iine) as functions 
temperature, after Rehage and Borchard (1973). 

0.90 
I I I 1 
0 100 200 

T ( " C )  

5. Plot of specific volume of polystyrene as function of temperature constructed by 
Rehage and Borchard (1973), by a procedure depending on measurements at V ~ ~ ~ O L S  

pressures. 

In detail, figure 4 represents their data for bulk polystyrene in the melt and theglassy 
states (full lines), and the partial specific volume of the same polymer in 
mak"e (the slightly curved broken line). While this extends the findings of Heller ad 
Thompson (1951) to solutions of higher concentrations, all solutions used for figured 
were Still in the liquid state (not glassy), and therefore no kink is expected in the broken 
line (See also Gordon and Taylor 1952). The Gibbs-DiMarzio model shows ck&whY 
T2 is depressed by the presence of solvent. 

Nor does figure 5 disprove the existence of a thermodynamic transition butitrather 
supports it. Its authors say merely: 'this curve shows a wide curved course on whichone 
Cannot very well distinguish a kink point.' It is Rot the case that the existence Of a 

d what wnd-order Ehrenfest transition is predicated on an absolutely sharp kink, an . 
rounding is actually observed lends additional interest to theoretical inteVretaaos 
m e r e  two essentially linear portions of a thermal expansion curve are separated bya 
rounded portion, the experimentalist is apt to extrapolate the linear portions to?e.e':! 
a fictitious point which to him represents Tg. n e  theoretical sanction for.ths ymt 
honoured procedure is simple: thermodynamics guarantees that the fiCtitrous ? reat' would respond to variables like pressure etc. precisely in the Same Way as a 
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a t e l y  sharp kink, provided the system is characterized by a single-disorder parame- 
ter n e  situation is well understood in other branches of physics. For instance, 

and Surdutovich (1974) describe the transition of a laser to a self-sustained 
as an oscillator as a second-order phase transition. (Unfortunately, in 

chemistry the word ‘phase’ is reserved for first-order transitions, i.e. the case where two 
aha ‘phases’ are in equilibrium.) They show a theoretical plot with a sharp kink, 
ddated from an infinite-volume model, of E* against N/Nthreshold, where N is the 
,-,umber of excited atoms and E the energy radiated. A more refined quantum- 
heoretical model leads to a ‘blurring’ of the transition, and is more realistic. But they 
do not argue that the local rounding of the curve should lead us to abandon the 
description in terms of the ‘unblurred’ Ehrenfest transition. The construction of figure 
7 by Rehage and Borchard, from their careful measurements, provides an opportunity 
for future refinements of the Tg theory. The finite volume of a real sample would 
probably lead to a less pronounced rounding of the curve than is observed here; nor 
does it seem likely that quantum effects (e.g. tunnelling through rotational barriers) 
would contribute sufficiently strongly. The proper interpretation of the observed 
‘blurring’ is still open in this case. 

Finally, Haward’s (1 975) restriction of thermodynamic second-order transitions to 
the more frequently realized subclass in which the heat capacity undergoes a step in the 
direction opposed to that at Tg, is unwarranted. 

3.2. The graph-theoretical basis of ihe Gibbs-DiMarzio model 
We this work was in progress, an important paper by Nagle (1974) appeared, which 
deals with the first-order melting transition of polymers, but incidentally makes explicit 
the connection between the combinatorial entropy of the Gibbs-DiMarzio model and 
graph theory. This combinatorial entropy contributes to the free energy from which 
both first-order (melting) and second-order (glass) transitions are calculated in different 
ways, but this distinction is not explicitly pointed out in Nagle’s paper. The relevance of 
Kasteleyn’s result was mentioned in a footnote to his paper, and the sensitivity of the 
model to the combinatorial approximation was clearly brought out. The limit we 
Qlculate for the Flory-Huggins approximation (our equation (17)) can be obtained also 
born his equation (7.3). Moreover, he gives a separate limit (his equation (7.8)) for the 
k w e d  second-approximation treatment of the combinatorial problem by Huggins 
(l942). It emerges that this Huggins approximation gives a substantially larger 
mmbhatonal entropy in the high-density limit (u l  + O), namely our equation (17) 
becomes: 

(24) 2-2) N p = ((2 - l)/[z/(z -2)F } 
‘%h, for coordination number = 3, gives an overestimate of P -  1.15N (instead of 
bq) and for z =4 : P -  1.sN (instead of 1.104 by Flory-Huggins, equation (21)). 
‘$sh this result of P - 1 a 5 appears to be an overestimate quite generally (see table 
‘),It is definitely a better approximation for the Gibbs-DiMarzio model than the crude 
“ Y h g i n s  approximation P - 1 -1O~l~ .  Unfortunately, data fitting in the literature 

generally been based O n  this latter approximation, perhaps because originally ROT 
his view that the inclusion of the Huggins term was hardly worthwhile. We 

f n u s t 3  however, bear in mind that Flory was thinking of dilute solutions ( V I  - 11, whereas 
now emerges that for the limit uI -0 in the glass transition theory, Huggins’s 

eRpresion is very significantly different (table 1). 
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Table 1. 

1. Honeycomb lattice 3 lb 0.735 1-15 
(unoriented, figure 7) 

in accordance with the 
Manhattan orientation 

3. Square lattice oriented 4 2 Id 1.104 1.5 

- 

2. Square lattice oriented 4 2 1.338515.. .' 1.104 1 -5 

(figure 8) 

in accordance with the 
underlying orientation of 
the Manhattan orientation 
(figure 9) 

Manhattan-oriented square 
lattice (figure 10) 
5. Covering lattice of an 4 2 1.398 f 0.002' 1.104 1.5 
oriented diamond lattice 
(figures Il(a), (b)) 

oriented cubic lattice 
(figures 12(a), ( b ) )  

4. Covering lattice of the 4 2 1.3758.. .e 1.104 1.5 

6. Covering lattice of an 6 3 1*810* 0.002' 1.84 2.22 

a z = coordination number where I =out degree, i.e. number of outgoing lines. 
b See appendix. 
c Kasteleyn (1963a). 
d Extrapolated computer results (to be published). (The corresponding lattice (figure 9) 

e Exact result (to be published). 
f Computer results (to be published): extrapolation, using periodic boundary mndifiom. 

with free edges is not Hamiltonian.) 

ia) (bl  

figure 6. Classification of lines in honeycomb lattice into tangential (shown boldin(o))aod 
radial (bold,in (b) ) .  
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Figwe 7. Various Hamiltonian walks (bold lines with end points marked) on honeycomb 
lattice of L = 3 layers of hexagons each. 

F i e  8. The Manhattan closed oriented square lattice. (Following Kasteleyn (1963).) 

Fignre 9. Square lattice oriented in accordance with the underlying orientation of the 
Manhattan-oriented lattice (i.e. the underlying lattice of the Manhattan-oriented lattice 
with diagonal boundary conditions (lines)). 
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Figure 10. Covering lattice of the Manhattan-oriented lattice. (Diagonal boundary mn& 
tions (lines) are again assumed on the Manhattan-oriented lattice.) 

la) lbi 

Figure 11. (a )  Unit cell of a closed oriented diamond lattice. (b)  Covering lattice of the 
oriented diamond lattice. Motif picked out (with some distortion) to illustrate t h e s m y  
of the closed oriented lattice. (The true unit cell has 16 crystallographic points; the 
shown comprises 9 such points, e.g. the 8 at the corners of the cube are counted One, 
because their weight = 1/8). The points marked A, B, C, D correspond to the ines 
marked in (a) under the construction of the covering lattice. 

- out half of the C-C bonds, does justice to the conformational proPehesof 
the Polymer backbones. The fact that the coordination number z = 4, involved in 
model, underestimates the number of neighbour segments belonging to other chains, lS 
presumably unimportant, because intermolecular interactions are adequately taken 
care of by the assumption of a fraction of lattice vacancies (holes). Table 1 Presen! 
results of computer calculations for various lattice types, to be published in mor! ded 

dY later, which show that the dependence of the configurational entropy depends Pm . 
On 2, in a manner approximately foreshadowed by the customary crude aPProximaaon 
of Hory-Huggins. However, when the crude approximation is abandoned ‘Or 
more exact calculations, minor variations become apparent, and are discused 
for lattices of different type but constant z. The results in this table conem Of 
the limiting case (nl = 0, n2 = 1, x + 0;)). This limit has been shown in 0 2.1 todominate 

~ n c l u s i o ~  the result of calculating T, from the theory, and it is hardly likely that Qu 
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(0) lb) 

Figore 12. (a)  A closed oriented cubic lattice. (Note that the X-Y, X-Z and Y-Z planes 
are Manhattan-oriented square lattices, therefore we may call this lattice 'Manhattan- 
oriented cubic lattice'.) ( b )  Covering lattice of the Manhattan oriented cubic lattice. Motif 
picked out to illustrate the structure of the closed oriented laftice graph. The plane marked 
Pis oriented in the same manner as the oriented lattice in figure 10 and may correspond to 
any X-Y, X-2 or Y-2 plane of the underlying lattice in (a), under the construction of the 
covering lattice. Dotted lines do not belong to the lattice graph; they are merely drawn to 
clarify spatial relationships. 

would be affected by the small term depending on u1 > 0 and the correction for x Cc0 

present in practice, nor by the adoption of E > 0 which is of course necessary for a finite 
Tg to be calculated. 

3.2.2. Type of lattice graph and the dimensionality of the embedding space; the r-degree 
offhe graph. There are problems going beyond the effect of the value of the coordina- 
tion number, which can be discussed in the light of table 1. The type of lattice graph to 
be assumed, and the dimensionality of the space in which such a graph is efficiently 
embeddable (so as to achieve translational symmetries consonant with constant bond 
lengths eto), are problems of interest to theoreticians. The problem of enumerating 
Hamiltonian walks, which has been shown to represent the limiting case of the 
Gibbs-Dihlarzio model and to dominate its quantitative results, is seen in table 1 to be 
relatively insensitive to lattice type or to dimensionality of the notional embedding 

as long as the coordination number is kept constant and (examples 2, 4, 5) ,  as 
long as artificial traffic restrictions are avoided (example 3). In the problem of finding 
fhenumber C,, of self-avoiding walks of n steps in general (not necessarily those visiting 

Point of a given lattice), Domb and Sykes (1961) found variations in 
"('lh~~+~(C,)~'") with the dimensionality of the embedding space, which were 
"idered to be significant. These variations are exemplified (Sykes et a1 1972) by 
1=4*1517 for the triangular lattice (z = 6) and p = 4.6835 for the simple cubic (SC) 
 la^@ ( z  = 6), giving the ratio 4.6835/4-1517 = 1.128. Table 1 shows that the ratio Of 

'F for the 'three-dimensional' covering lattice of the diamond to nH for the 'two- 
duaensional' Manhattan-oriented square lattice is 1 -398/1*339 = 1 *044, where the 
Cwrdination number is z = 4 for both lattices. In our discussion the ratio represents a 

innocuous deviation from unity when compared to the value of &-I= 1-10 
(Obtained from the crude combinatorial approximation) hitherto used in fitting data on 
Tg. As always, the significance of variations due to the artificially assumed lattice type 
must be weighed in the light of the actual physical theory under discussion. 
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It must be emphasized that the dimensionality of the embedding spae is not the 
appropriate theoretical tool for analysing the variations. The combinatorid 
relates to a lattice graph, and is quite independent of the dimensionality of 

embedding space, of its metric, oi’ of topological problems (like the planarityofagraph) 
connected with such embedding. To put it crudely, the number of Hamiltonian walks 
on a square lattice graph embedded in the surface of a torus is invariant to conhuou 
transformations of the toroidal surface, or of tying knots in the torus, but 
property of an essentially one-dimensional object, namely a graph. 

It is well known that random walks on ‘three-dimensional’ lattices haye a finite 
chance of escaping from the origin for ever, while on a ‘two-dimensional’ lattice they 
return to the origin infinitely often. This seems to belie the statement that the n u b e r  
of random walks, like that of Hamiltonian walks, is independent of the dimensionality 
of the embedding space, and merely a property of the lattice graph. Yet the statementis 
true, and we propose the following description of the situation. Consider the notionof 
the degree z of a point in a graph, namely, the number of lines incident thereon. 
Generalize the notion to that of the r-degree of a given point, defined as the number of 
points linked to the given point by paths consisting of r lines, and which cannot be 
reached by paths of less than r lines. Then z is merely the special case r = 1, i.e. the 
1-degree of a lattice point. Now in the square lattice graph, the r-degreeccr, andinthe 
cubic lattice graph the r-degree ot r2 for large r. This is the graph-theoretical reason for 
the different statistical behaviour of the return to the origin in the two cases, as is clear 
from the usual proofs of the result. The concept of r-degree was used by Kasteleyn 
(1957) in his elegant proof of Kirchhofs (1847) theorem for the enumeration of 
spanning trees, and earlier (Kasteleyn 1963b) he defined the ‘d;mensionality’of alattice 
graph, namely lim In(r-degree)/ln r plus unity, as an intrinsic property independent of 
an embedding space. 

3.2.3. Boundary conditions. Boundary effects have been neglected altogether in *e 
literature on models for the glass transition. Since the present work shows *e 
Gibbs-DiMarzio model to be largely dependent on the Hamiltonian walk Problemyib 
formal dependence on boundary conditions deserves attention. Consider the honey 
comb and square lattice graphs with various boundaries (figure 13). The honeycomb 

( C i  ( d l  

Figure 13. Various boundary conditions: (a) brickwork lattice; (b )  hexagon’ lanice;(‘) 
layered square lattice; ( d )  square lattice. 
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latticecan be continuously deformed into the so called brickwork lattice graph, i.e. kom 
themo-dimensionaI space group P6mm to C2mm. The natural boundary conditions, 
i,e, affording maximum preservation of symmetry are 6mm (figure 13(b)) and zrnm (figure 33(a)) respectively. The former gives HN - c ~ ~ ' ~  (appendix) and compu- 
ter r&S suggest that the same is true for the latter. Computer results on the 
brickwork lattice with toroidal boundary conditions suggest that HN is much increased 
over the free boundary cases of figures 13(a) and (b) ,  but the asymptotic behaviour 
rem&m open#,r-blem. We are grateful to areferee for pointingout that figure 13(c) 
lea& to HN - c and this underlines the danger inherent in neglecting boundary 
an&tions. For the square lattice we can show that the boundary of figure 13(d) leads to 
&-cN (on the assumption of equation (9)) which is the well behaved case. 

Actually the Hamilton walk problem forms a lower bound to the x-mer problem. 
,by sensitivity of the former to rather restrictive boundary conditions by no means 
necessarily implies a corresponding sensitivity of the x-mer problem. 

3.3. Consequences of this investigation 

We regard the model of Gibbs and DiMarzio as the best one available for rationalizing 
themain features of Tg. The number of configurations (or entropy) has been shown to 
be seriously underestimated by the model, in comparison with exact analytical or 
near-exact computer results for different lattices. The practical effect of this demon- 
stration would, on the face of it, demand a substantial upward revision of the values of 
thechain-stiffness parameter, the rotational barrier E. However, when we bear in mind 
thesensitivity of the entropy to the coordination number of the lattice graph, and other 
artificial features of the model, it seems mandatory to conclude that E had better be 
reconsidered as an adjustable parameter which we cannot hope to interpret absolutely 
hmolecuiar terms. Differences in E values calculated from T' of similar systems can, no 
doubt, retain their molecular interpretation in terms of differences in rotational 
banien. The situation has its analogy in the semi-empirical status of the single 
floY-kluggins parameter x, which dominates the opposite limiting case of infinite 
dilution. 

The explicit characterization of the whole problem in graph-theoretical terms 
%%eStS some routes to further progress. For instance, the model should lend itself to 
*ehwrporation of the effect of side groups. These groups have so far been stripped 
f"e backbone, thus reducing the problem to that of self-avoiding lattice walks. We 

that the theory of such walks can be generalized to excIude the approach of two 
of the chain to within a given number of lattice steps. In this way, side groups 

m'ld be accommodated by the theory, and the entropic effects due to side groups Of 
aerent sizes could be studied. Finally, we draw attention to the need (6. 8 3.1) to 
aQyttheoretic~~y for any rounding off or blurring of the thermodynamic (Ehrenfest) 
bltion underlying T,. 
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Appendix. The number of Hamiltonian Walks on a honeycomb lattice 

We adopt a hexagonal boundary, enclosing L layers of hexagons, say. Figure 6 shows 
examples with L = 4; the innermost ‘layer’ comprises a single hexagon, ne lines 

(line segments) are classified into tangential (figure 6(a)) and radial (figure qb)); t6e 
radial lines form ties between the layers of tangential lines. Figure 7 showsfour ofmany 
exampies of Hamiltonian walks for L = 3. In each case, one of the two endpointsofhe 
walk fies on the outermost layer, and this is unavoidable, since all points on the 
layer could not otherwise be visited by a Hamiltonian walk. Figure 7 also showsthatfie 
second end point can occur on any of the tangential layers, and that two end p in ts  do 
not define the Hamiltonian walk (figures 7(a)  and (b)) .  

me number H(L) of distinct Hamiltonian walks for L layers is found as follows. bt 
D(L) be the number of double-entry Hamiltonian walks (both end points on outer 
layer), and S(L) the number of single-entry Hamiltonian walks (one end point on outer 
layer), and proceed by induction on L. For any double-entry walk on L layers, remove 
the outermost layers of tangential and radial lines, thus generating a double-entry walk 
on the lattice of L - 1 layers. Conversely, each double-entry walk on L - 1 layers can be 
continued outward (at both ends) to produce exactly two distinct walks on L layers: 

D(L) = 2D(L - 1). ( A 4  
Similarly it is easy to verify that 

S(L)=2S(L- 1 )+4D(L- l ) .  ( A 4  
Since S(l) = 0, D(1) = 6, these recurrence relations are easily solved to yield 

H(L) = S(L) + D ( L )  = 3(2L - 1)2! (A.3) 

Also, using the easily verified relation for the number N of lattice sites: 

N = 6L2 

we find the number of Hamiltonian walks as a function of N :  

(A.4) 

This result fails to yield a finite molar configurational entropy, essentially 
the number of Hamiltonian walks varies exponentially with the number L of latha 
layers (e.g. equation (A.3)) but not with the number N of sites (e.g. equation 

References 

Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139 
Beevers R B and White E F T 1960 Trans. Faraday Soc. 56 744 
Cowie J M G and Toporowski P M 1968 Eur. Polymer J. 4 621 
Domb C 1974 Polymer 15 259 
Domb C and Sykes M F 1961 J. Math. Phys. 2 63 
Gibbs J H 1956 J. Chem. Phys. 25 185 
Gibbs 3 H and DiMarzio E A 1958a J .  Chem. Phys. 28 373 
- 1958b J. Chem. Phys. 28 807 
Gordon M 1965 Physics ofPlastics, ed P D Ritchie (London: Iliffe) 
Gordon M and Taylor J S 1952 J. Appl. Chem. 2 493 
Gordon M, Ross-Murphy S B and Suntki H 1976 Eur. Polym. J. in press 



The graph-like state of matter VII 769 
Haward R N 1975 Molecular Behaoiour and the Development of Polymeric Matenah, 4 s  A Ledwith and 

~~n~~ w and Thompson A c 195 1 J. Colloid. Sci. 6 57 
~"eg ins  M L 1942 Ann. Acad. Sci. NY 43 1 
Kasteleyn p W 1963aPhysica 29 1239-337 - 1963b J. Math. Phys. 4 287-93 - 1967 Graph Theory and Theoretical Physics ed F Harary (London and New York: Academic Pres) 
Bmann W 1948 Chem. Reo. 43 2 19 
"V A P and Surdutovich G I 1974 Prog. Quant. Electron. 3 233 
w f f G  1847 Ann. Phys. Chem, Lpz. 72 497 
Ijeb E H 1967 Phys. Reo. kCC. 18 1046-8 
GbEHandWuFaYueh 1972PhaseTransitionsandCnticalPhenome~,voI 1,edsCDombandMSGreen 

MW P 1965 Polymers: Structure and Bulk Properties (London: Van Nostrand) 
Nagle J F 1974 PrM. R. SOC. A 337 569-89 
& W J C 1947 Trans. Faraday Soc. 43 12 
Rehage G and Borchard W 1973 The Physics of Glassy Polymers, ed R N Haward (London: Applied Science 

Sykes M F, Guttmann A J, Watts M G and Roberts P D 1972 J. Phys. A :  Gen Phys. 5 65340  
Tompa H 1956 Polymer Solutions (London: Buttenvorths) 
Vrij A and van den Esker M W J 1972 J. G e m .  Soc., Faraday Truns. I1 68 5 13 

A H North (London: Chapman and Hall) 

(London and New York: Academic Press) 

Publishers) 


